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Abstract
Background  The influence of vision on multi-joint control during dynamic tasks in anterior cruciate ligament 
(ACL) deficient patients is unknown. Thus, the purpose of this study was to establish a new method for quantifying 
neuromuscular control by focusing on the variability of multi-joint movement under conditions with different visual 
information and to determine the cutoff for potential biomarkers of injury risk in ACL deficient individuals.

Methods  Twenty-three ACL deficient patients and 23 healthy subjects participated in this study. They performed 
single-leg squats under two different conditions: open eyes (OE) and closed eyes (CE). Multi-joint coordination 
was calculated with the coupling angle of hip flexion, hip abduction and knee flexion. Non-linear analyses were 
performed on the coupling angle. Dependence on vision was compared between groups by calculating the CE/OE 
index for each variable. Cutoff values were calculated using ROC curves with ACL injury as the dependent variable 
and significant variables as independent variables.

Results  The sample entropy of the coupling angle was increased in all groups under the CE condition (P < 0.001). The 
CE/OE index of coupling angle variability during the descending phase was higher in ACL deficient limbs than in the 
limbs of healthy participants (P = 0.036). The CE/OE index of sample entropy was higher in the uninjured limbs of ACL 
deficient patients than in the limbs of healthy participants (P = 0.027). The cutoff value of the CE/OE index of sample 
entropy was calculated to be 1.477 (Sensitivity 0.957, specificity 0.478).

Conclusion  ACL deficient patients depended on vision to control multiple joint movements not only on the ACL 
deficient side but also on the uninjured side during single leg squat task. These findings underscore the importance 
of considering visual dependence in the assessment and rehabilitation of neuromuscular control in ACL deficient 
individuals.

Keywords  Anterior Cruciate Ligament(ACL), Movement variability, Sample entropy, Joint motion coordination, 
Single-leg squat, Visual information
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Background
Anterior cruciate ligament (ACL) injury is the one of 
the most common injury of the knee in sports [1]. The 
incidence rate of ACL injuries remained relatively stable 
between 1990 and 2010, especially in females [2]. More-
over, patients who have undergone ACL reconstruction 
often require revision or suffer an ACL injury on the con-
tralateral side. In the first 5 years after ACL reconstruc-
tion, the rate of new ACL injury is higher than the rate of 
primary ACL injury in the general population [3]. These 
high ACL injury rates may be due in part to the lack of 
effective prevention programs before injury and after 
ACL reconstruction.

Noncontact mechanisms account for 70–76% of all 
ACL injuries [4] and occur most commonly during 
dynamic activities involving rapid deceleration and land-
ing [5, 6]. Performing these movements with less risk of 
ACL injury requires more skillful neuromuscular con-
trol. In previous studies, neuromuscular control systems 
have often been represented by the movement of the 
centre of pressure (COP). Fernandes TL et al. observed 
that during single-leg standing and squat tasks, athletes 
with ACL injuries exhibited greater lateral shifts in the 
COP than did healthy subjects [7]. Similarly, Nematol-
lahi M et al. reported that the trembling component of 
the COP, which reflects peripheral systems such as mus-
cle activity, was significantly greater in individuals with 
ACL deficiency under both single-leg and double-leg 
conditions, indicating increased instability [8]. Bodkin 
SG et al. reported no significant difference in the aver-
age velocity of the COP during one-legged stance pos-
tural control between patients who had undergone ACL 
reconstruction and healthy subjects, suggesting that ACL 
reconstruction may restore some aspects of postural 
control to preinjury levels [9]. However, Steffen K et al. 
found no correlation between COP movement veloci-
ties, both anterior-posterior and lateral, during static and 
dynamic postural control and the risk of ACL injury in 
female elite handball and soccer players [10]. This indi-
cates that poor movement specific to those at high risk 
of ACL injury is inadequately measured by COP and 
that it is difficult to identify features of the neuromus-
cular control system. Moreover, several studies suggest 
that noncontact ACL injury results from multi-plane 
joint moment caused by multi-directional ground reac-
tion forces [5, 11, 12]. These studies show that controlling 
joint motion across multiple joints could lead to postural 
stabilization and prevention of ACL injury. The nonlinear 
analyses of motion variability associated with ACL injury 
or reconstruction have focused on two different joints 
or two joint motions [13–15]. On the other hand, it has 
been shown that more than three joint motions, includ-
ing others in the knee joint, may be involved in the risk of 
noncontact ACL injury. Video analysis at the time of ACL 

injury reported low hip flexion angles [16], and weakness 
of the hip abductor muscle strength was a risk factor for 
non-contact ACL injuries [17]. In addition, a decrease 
in absorption in the lower extremity due to a smaller 
hip flexion angle motion [18], this is an energy absorp-
tion strategy that relies on distal joints such as the ankle 
joint and may increase the knee valgus motion [19]. It is 
speculated that the combined occurrence of these factors 
increases the risk of ACL injury. These joint movements 
can be controlled by muscles, unlike knee valgus motion 
which does not have a primary active muscle, so skillful 
control of these joint movements may be useful in pre-
venting ACL injury.

Recent studies have shown that coordination patterns 
change depending on the availability of visual informa-
tion [20]. Studies of stability control related to ACL injury 
have examined the influence of vision in static assess-
ments such as quiet standing or one-legged standing. In 
several previous reports, COP deviation in patients after 
ACL reconstruction was greater with closed eyes than 
with open eyes, and these values showed a greater range 
of elevation than did those on the healthy or uninjured 
side [21–23].. However, prevention of ACL injuries or 
revision after ACL reconstruction requires stable pos-
tural control in more dynamic situations. Trulsson et 
al. reported deviations in muscular activity between the 
injured and noninjured sides in individuals with ACL 
injuries during single-leg squats, suggesting altered sen-
sorimotor control [24]. Therefore, the influence of vision 
on the neuromuscular control system in more complex 
tasks, such as the single-leg squat, should be considered.

The purpose of this study was to reveal differences in 
neuromuscular control in ACL-deficient patients dur-
ing single-leg squats with different visual information 
via nonlinear analysis for multiple joint movements. We 
hypothesized that ACL-deficient patients would exhibit 
more variability during movement in both of injured side 
and uninjured side, and that reduced visual information 
would further manifest their characteristic movements 
variability.

Methods
Participants
This study was approved by the Ethical Review Commit-
tee for Medical Research Involving Human Subjects in 
accordance with the Declaration of Hiroshima University 
(ID number: C-274-1). Twenty-three patients with non-
contact ACL injury (23 affected knees) aged from 16 to 
42 years (11 males and 12 females; mean age, 21.7 ± 6.9 
years old) participated in this study. The recruitment 
period for this study was between July 2019 and June 
2022. The inclusion criteria were as follows: outpatients 
of the Department of Orthopaedic Surgery, Hiroshima 
University Hospital, who completed junior high school 
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or other courses, diagnosed by an experienced ortho-
paedic surgeon as having ACL injury based on MRI 
imaging findings and physical findings, requiring ACL 
reconstruction, and able to walk alone. The surgeon was 
trained to uniformly evaluate the physical examination 
findings, including the pivot shift test and the Lachman 
test. Patients were excluded if they had any of the follow-
ing: under 16years old, bilateral ACL injury, history of 
lower limb injuries within 2 years, ligament reconstruc-
tion within 2 years, knee or hip joint arthroplasty or high 
tibial osteotomy, neuromuscular disorder, history of 
stroke or cardiovascular disease, or any other gait abnor-
malities. For comparison, 23 healthy subjects matching 
age and body size with no history of neuromuscular dis-
order or orthopaedic problems in the lower limbs partici-
pated. Participant characteristics are shown in Table  1. 
All participants in this study gave informed consent using 
documentation and signed a consent form.

A prior power analysis for sample size was performed 
with G*Power (version 3.1; Franz Faul, Kiel University, 
Kiel, Germany); for an effect size of 0.3, power of 0.80, an 
α level of 0.05, and numerator degrees freedom of 1 and 
2, number of groups of 6; a total of 90 and 111 samples 
for main effects, and 111 samples for interactions were 
needed, respectively. Therefore, there was a minimum of 
23 samples for each condition and for each group consid-
ering possible dropout in this study.

Procedure
Kinematic data on the patient motion were acquired 
using a three-dimensional motion analysis system 
(VICON NEXUS; Vicon Motion Systems, Oxford, 
UK) with 16 infrared cameras (Vicon Motion Systems, 
Oxford, UK) operating at 200 Hz. Before each measure-
ment session, devices were calibrated, and the mean cali-
bration residuals for trials were under 1.00 mm.

Infrared-reflecting markers 14  mm in diameter were 
attached to 45 landmarks including the left front head, 
right front head, left back head, right back head, 7th cer-
vical vertebrae, 10th thoracic vertebrae, clavicle, ster-
num, right back, bilaterally acromion, lateral epicondyle 
approximating the elbow joint, wrist bar thumb side, and 
pinkie side, head of the 2nd metacarpus, anterior supe-
rior iliac spine, posterior superior iliac spine, great tro-
chanter, lateral aspects of the thighs, lateral and medial 
epicondyles of the femur, lateral aspects of the shanks, 
lateral and medial condyles of the tibia, lateral and medial 
malleoli, head of the 2nd metatarsal heads, and the calca-
neal tuberosity. Motion trials were captured as the par-
ticipant performed single-leg squats (SLSs). Participants 
performed the actual task after completing a minimal set 
of fewer than five consecutive SLSs with their eyes open 
as a preliminary exercise. Participants were instructed 
to perform 12 SLSs with their hands on hips; require-
ments for the flexion angles of the joints and the depth 
of the squat were not specified. The SLSs were conducted 
in sync with a metronome set at 120 bpm, such that the 
metronome emitted a clicking sound once at the lowest 
position of the squat and once at the highest position. 
Participants performed the exercises under two random-
ized order conditions; the eyes-opened (OE) and eyes-
closed (CE), with the supporting leg, which was defined 
as the lower limb on the supporting side when kicking 
a ball, in healthy subjects (Healthy) and both the ACL-
deficient (ACLD) side and contralateral uninjured side 
(Uninjured) in patients with ACL injury. Successful tri-
als were those in which the participants performed 12 
repetitions without the opposite lower limb touching the 
ground and performed in rhythm. The first and last one 
each were excluded, and the 10 SLSs were analysed.

Data processing
The lower limb joint angles and centre of mass (COM) 
were calculated using the processing software Body-
Builder (Vicon Motion Systems, Oxford, UK) based on 
collected marker coordinates. The centre of a partici-
pant’s ankle joint was estimated as the midpoint between 
the malleoli, while the knee joint centre was estimated as 
the midpoint between the lateral and medial epicondyles 
of the femur and the lateral and medial condyles of the 
tibia. The hip joint centre was estimated based on a pre-
vious study [25]. The collected marker coordinates were 

Table 1  Characteristics of participants
Healthy 
volunteer 
(n = 23)

ACL 
injured 
patients 
(n = 23)

P value

Age (years old) 21.7 ± 5.5 21.7 ± 6.9 n.s.
Sex(female/male) 11/12 11/12 n.s.
Body height(cm) 166.7 ± 9.2 166.4 ± 8.5 n.s.
Body weight(kg) 63.3 ± 14.8 67.3 ± 10.4 n.s.
BMI(kg/m2) 22.6 ± 3.9 24.3 ± 3.2 n.s.
Time since injury (months) - 24.3 ± 19.4 -
IKDC score 99.3 ± 1.9 68.2 ± 13.0 < 0.001*
Tegner Activity Score 5.96 ± 1.36 4.39 ± 1.84 < 0.001*
Lysholm Knee Scoring Scale 99.8 ± 1.0 85.0 ± 10.0 < 0.001*
KOOS
Symptoms 100 ± 0 85.6 ± 9.6 < 0.001*
Pain 99.4 ± 2.9 87.2 ± 8.0 < 0.001*
Function, daily living 100 ± 0 93.6 ± 6.0 < 0.001*
Function, sports and recreational 
activities

99.8 ± 1.0 62.0 ± 20.3 < 0.001*

Quality of Life 100 ± 0 63.1 ± 16.4 < 0.001*
mean ± S.D., *: p < 0.05, unpaired t test, n.s.: not significant

ACLD: anterior cruciate ligament deficient

IKDC: International Knee Documentation Committee

KOOS: Knee injury and Osteoarthritis Outcome Score
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used to define the respective local coordinate systems of 
the fifteen-point body link model consisting of the head, 
thorax, both upper arms, both lower arms, hands, pelvis, 
both thighs, both shanks, and both feet. The position of 
the centre of mass position for each segment was calcu-
lated based on body inertia characteristics in a report by 
Okada et al. [26], and all composite centres of mass for 
all segments were used as the whole-body COM. A sin-
gle squat was identified as the combined descending and 
ascending phases of a SLS indicated by the COM vertical 
displacement between the vertical maximum position.

Multiple joint coordination
Hip flexion-extension, hip abduction-adduction, and 
knee flexion-extension motions are associated with ACL 
injury [6]. The coordination of these three joint motions, 
hip flexion (+)–extension (-), hip abduction (+)–adduc-
tion (-) and knee flexion (+)–extension (-), and the cou-
pling angle (CA) were obtained from the Appendix.

The COM data were divided into ascending and 
descending phases, and the coupling angle variability 
(CAV) was calculated for each phase by the Appendix, 
and the average of 10 SLSs. The sample entropy (SaEn) 
of the CA was calculated with embedding dimension, 
and tolerance was set to 2 and 0.2 × SD, respectively [27]. 
Non-linear analysis processing was conducted in open-
source Python (version 3.9) under Jupyter Notebook with 
pandas, nolds, numpy, sklearn and Anaconda libraries.

Dependence of visual information
To examine the effect of visual acuity, the CE/OE index 
was calculated for each variable by dividing the CE value 
by the OE value. Values close to 1 suggest a minimal 
influence of visual information on balance, while values 
greater than 1 indicate a greater dependency on vision.

Statistical analysis
The statistical analyses were performed using IBM SPSS 
25.0 (SPSS Inc., Chicago, IL, USA). Differences in physi-
cal characteristics between groups in the participants 
were tested with an unpaired t-test. A two-way factorial 
analysis of variance (ANOVA) was performed to assess 
the effects of group (Healthy vs. ACLD vs. Uninjured) 
and condition (eyes-open and eyes-closed) on COP val-
ues, CAV and SaEn. One-way ANOVA was performed 
for the CE/OE index for each variable. All variables are 
presented as the mean and SD. If significant main effects 
or interactions were identified using ANOVA, post hoc 
pairwise comparisons using the Tukey‒Kramer multiple 
comparisons test were then performed.

Finally, the capacities of dependence on visual infor-
mation indicators for predicting ACL-injured risk were 
compared via area under the receiver-operating char-
acteristics (ROC) curves (AUC) analysis. We analysed 

variables significantly different from healthy subjects 
for the uninjured side limb of ACL-injured individuals, 
rather than the injured leg, in order to identify the poten-
tial risk of ACL injury. The cutoff value was defined as the 
point at which the Youden Index of the ROC curve was 
the largest. All p values were two–sided and p < 0.05 was 
considered statistically significant.

Results
Effects of ACL injury and condition on CAV and SaEn
Significant condition-specific effects were observed for 
ascending-phase CAV (p < 0.001, F = 33.86), descending-
phase CAV (p = 0.048, F = 3.99) and SaEn CA (p < 0.001, 
F = 52.02). Conversely, the main effect of group failed 
to reach statistical significance. All results of two-way 
ANOVA are shown in Table 2.

Effects of visual information for CAV and SaEn
Group mean ± 95% confidence intervals, along with 
individual participant mean outcome measures are pre-
sented in Fig.  1, with full statistical analysis reported in 
Table 3. The CE/OE index of CAV during the descending 
phase in the ACLD was higher than that in healthy par-
ticipants (95% CI 0.017-0.60; P = 0.036; Table 3). The CE/
OE index of SaEn on the uninjured side was higher than 
that of healthy participants (95% CI 0.031–0.49; P = 0.027; 
Table 3.)

ROC curve analysis
ROC curve analysis by CE/OE index of SaEn is shown in 
Fig. 2. The cutoff of the CE/OE index of SaEn was calcu-
lated to be 1.477 (sensitivity 0.957, specificity 0.478), and 
AUC was 0.677(95% CI 0.513–0.84).

Discussion
The most important finding in this study is that patients 
with ACL injuries have contralateral neuromuscular con-
trol system dysfunction, indicating that stable and con-
tinuous joint motion is difficult at multiple joints. These 
results may quantify the potential risk of ACL injury in 
individuals with current ACL injuries and may be use-
ful for preventing not only future reinjury of the recon-
structed ACL but also new injury of the contralateral 
ACL.

Our study results showed that, in both healthy subjects 
and those with ACL injuries, the variability in postural 
control during SLSs was greater when the subjects’ eyes 
were closed than when they were open. Specifically, we 
observed an average increase in variability of 136.8% dur-
ing the ascending phase and 117.3% during the descend-
ing phase, as measured by the CAV, and an average 
increase of 141.8% in the SaEn CA. This finding indicates 
greater variability in postural control during dynamic 
motor tasks with eyes closed. However, there was no 
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difference in variability under both the open-eyes and 
closed-eyes conditions between the two groups. These 
results are consistent with the finding of Dingenen et al., 
who demonstrated no significant difference in single-leg 
stance COP stability among healthy, ACL-injured, and 
contralateral limbs under both open-eyes and closed-
eyes conditions [28]. In contrast to our findings, prior 
studies have reported that compared with healthy sub-
jects, individuals with ACL injuries exhibited impaired 
postural control on not only the injured side but also the Ta
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contralateral side during static tasks such as static stand-
ing and single-leg standing [29, 30]. We speculate that 
this difference is because we selected the SLS, which is 
a more dynamic task. Among several dynamic motor 
tasks, the SLS is more susceptible to dual-task effects 
[31]. Our study results indicate that it is not appropriate 
to compare the absolute values of the variability in the 
movement of SLSs between open and closed eyes. How-
ever, several reviews have indicated that a more dynamic 
assessment is needed for the prevention of noncon-
tact ACL injuries and reinjury [32, 33]. This shows that 
a novel dynamic postural control assessment index is 
needed to detect the risk that ACL-injured patients have.

In this study, CE/OE was evaluated to quantify the reli-
ance on visual information in ACL-injured subjects. The 
results revealed greater variability on the ACLD limb 

than healthy subjects’ limb during the descending phase 
of CAV and on the uninjured limbs than healthy subjects’ 
limb during the entire SaEn. These results suggest that 
ACL-injured subjects use a postinjury adapted or prein-
jury potentially visually dependent movement strategy. 
ACL-injured patients are known to have different motor 
patterns on the contralateral side compared to healthy 
subjects [34], and lack of visual information promotes a 
more rigid movement pattern [35]. This might show that 
ACL-injured patients exhibit more rigid movement pat-
terns when required to perform the dynamic task of col-
lecting more sensory information due to the loss of visual 
information. In order to understand the clinical signifi-
cance of these variables, we used ROC analysis to deter-
mine the cutoff risk of ACL injury on the uninjured side 
limb, which is less susceptible to changes in joint motion 
due to ACL injury. The cutoff value was 1.477, and the 
sensitivity was reasonably high, indicating the possibility 
of screening for ACL injury risk, and although the speci-
ficity is low, it is useful for clinically screening individuals 
for prevention programs. ACL-injured limbs demon-
strated lower kinesthesia [36], fewer somatosensory 
evoked potentials than healthy subjects [37], and a lack 
of muscle coactivation modulation [38]. ACL-injured 
individuals might be implementing adaptations to the 
reduced afferent input at the knee joint due to ACL defi-
ciency that increases afferent joint sensory input infor-
mation by increasing joint motion variability [39, 40]. In 
addition to these studies, the lack of visual information 
for the ACL-injured subjects may also increase variability 
in other multi-joint movements, including the hip joint 
that we evaluated, to increase dynamic afferent joint sen-
sory input. Moreover, Diekfuss et al. evaluated altered 
brain connectivity that may have predisposed athletes to 
ACL injury and reported that those who went on to expe-
rience an ACL injury had decreased functional connec-
tivity between the left primary sensory cortex and right 
posterior lobe of the cerebellum [41]. These previous 
reports suggest that ACL-injured patients have differ-
ent neuromuscular control systems than healthy subjects 
even before ACL injury, which may have been high-
lighted by the visual deficits and dynamically unstable 
motor tasks in the present study. Future research explor-
ing optimal variability in multiple joints will provide a 
better understanding of ACL injury prevention.

There are three limitations to this study. First, it is not 
clear when differences in motor control on the uninjured 
side occur in ACL-injured patients. The subjects with 
ACL injuries had lower Tegner activity scores than did 
the healthy subjects, which may indicate that inactiv-
ity affects postural control. In addition, it is known that 
ACL-injured individuals experience a variety of changes 
due to injury, one of which affects the contralateral lower 
extremity [42]. To verify this, a prospective cohort study 

Table 3  Effects of visual information for CAV and SaEn
CE/OE index Healthy ACLD Uninjured F 

value
P 
value

Ascending 
phase CAV

2.89±2.47 3.39±2.89 3.68±2.72 0.49 0.617

Descending 
phase CAV

1.08±0.25 1.39±0.49† 1.29±0.43 3.34 0.036*

SaEn CA 1.29±0.16 1.46±0.31 1.55±0.43† 3.82 0.027*

mean ± S.D.

*: indicate significant in one-way ANOVA

†: indicate significant difference compared with Healthy, post-hoc: Tukey-
Kramer multiple comparisons test

ACLD: anterior cruciate ligament deficient, OE: open eyes, CE: closed eyes,

CAV: coupling angle variability, SaEn: sample entropy, CA: coupling angle

Fig. 2  ROC curve of CE/OE index of SaEn. The ROC curves displayed CE/
OE index of SaEn cutoff of 1.477 (sensitivity 0.957, specificity 0.478), and 
AUC was 0.677(95% CI 0.513–0.84)
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is needed to determine if there are any differences in the 
contralateral lower extremity in future ACL injury sur-
vivors. Second, this study does not fully demonstrate 
whether ACL deficiency causes differences in move-
ment characteristics on the ACL-injured side. Therefore, 
it is necessary to clarify the effects of afferent and effer-
ent neuromuscular control system functions, including 
tests of proprioceptive function and evaluation of muscle 
activity. To investigate the effects of ACL deficiency, it 
is necessary to examine whether changes in movement 
variability occur when knee joint stability is improved 
through prospective studies after ACL reconstruction. 
The application of principal component analysis for 
dimensionality reduction in this study potentially con-
strained the multidimensional analysis of the data. Con-
sequently, critical insights into the unique joint motion 
characteristics of individuals with ACL injuries, such as 
variability in motion during specific time intervals and 
the interplay between different conditions, might not 
have been fully captured. To overcome these limitations, 
future research should include analytical techniques 
capable of identifying variability across specific periods, 
such as Statistical Parametric Mapping [43], to provide a 
more comprehensive understanding of the factors con-
tributing to ACL injury risk.

Conclusion
Subjects with ACL injuries exhibit increased variability 
and dependence on visual information during SLSs, as 
indicated by higher CE/OE indices in multiple joint CAV 
and SaEn than healthy subjects. These findings under-
score the importance of considering visual dependence in 
the assessment and rehabilitation of neuromuscular con-
trol in ACL-deficient individuals.
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